

A Programmer’s Guide to the Overwatching Fires Behavior

by MaryAnne Fields, MyVan Hoang Baranoski, and B. Tom Haug

ARL-TR-3548 July 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3548 July 2005

A Programmer’s Guide to the Overwatching Fires Behavior

MaryAnne Fields, MyVan Hoang Baranoski, and B. Tom Haug
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

July 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2003–October 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Programmer’s Guide to the Overwatching Fires Behavior

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

622618AH80
5e. TASK NUMBER

6. AUTHOR(S)

MaryAnne Fields, MyVan Hoang Baranoski, and B. Tom Haug

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-WM-BF
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3548

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the software modules required to demonstrate an overwatching fires (OWF) behavior on a team of
laboratory robotic platforms. The modules are divided into three types—servers, an operator control unit (OCU), and the OWF
application. Servers are independent software programs that communicate with sensors and actuators on-board the robot. The
OCU is an independent process that allows operators to start, modify, and stop the OWF behavior. The OWF application
consists of several modules that control sensing, communication, movement, and shooting for each of the robots in the team.

15. SUBJECT TERMS

robot, behavior algorithms, overwatching fires

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
MaryAnne Fields

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

38 19b. TELEPHONE NUMBER (Include area code)

410-278-6675
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1
1.1 The OWF Algorithm ...1

1.2 Hardware Considerations ..3

2. Servers 5

3. The MONITOR program 6

4. Overwatching Fires Functions 9
4.1 Image Processing...9

4.2 Sonar/Laser Processing ...12

4.3 Movement..14

4.4 Communication ...17

4.5 Firing/Observing Functions...19

4.6 Miscellaneous..20

5. Conclusions 22

Appendix. Named Constants 24

Distribution List 26

 iv

List of Figures

Figure 1. The OWF process flowchart..2
Figure 2. Behavior experiment using laboratory robots’ simplifications allow us to focus on

the algorithm and not be distracted by the integration of additional sensors, algorithms, or
processors...4

Figure 3. The main window of the MONITOR program..7
Figure 4. The settings popup window...8
Figure 5. The target confirmation popup window. ...9

List of Tables

Table 1. Servers required by the OWF software...6

 1

1. Introduction

One of the goals of the U.S. Army ground robotics research program is to develop individual and
group behaviors that allow the robot to contribute to battlefield missions such as reconnaissance.
As a part of this research program, at the Weapons Technology Analysis Branch of the U.S.
Army Research Laboratory (ARL), we have developed a behavior to demonstrate aspects of an
overwatching fires, hereafter referred to as OWF, mission. The behavior is a cooperative
mission – a team of ground robots (the current behavior is limited to the use of two ground
robots, but could be expanded to include the use of air assets, as well as additional ground
robots) and human operators work together to protect an area from enemy incursion. Human
operators have a limited role in this behavior. They designate the area of interest for the robot
and may need to confirm targets before the robots fire upon them. There are two distinct roles
for robot team members – observers and shooters. Roles are assigned to robots before the
mission starts; robots cannot switch roles after the mission begins. The observers watch for
enemy units in the designated area. Once enemy units have been identified, the shooters move
into position and fire upon enemy units detected by the observers. After the shooter has fired on
its target, it may move to another firing position to await its next target. The mission continues
until the enemy unit leaves the area, sufficient damage has been inflicted, or the OWF unit
receives a new mission.

Initially, we used the battlefield simulation tool One Semi-Automated Forces Test Bed (OTB) to
develop an OWF algorithm that was not tied to a specific robotic hardware configuration. This
work is documented in Fields.1 The primary focus of this report is the robotic implementation of
the OWF algorithm, although we discuss aspects of the OTB implementation as well. In the
remainder of this section, we provide a detailed description of the algorithm and a discussion of
the robotic hardware used in this work. Sections 2 and 3 are programmer’s guide describing the
software developed to implement the OWF behavior algorithm on a specific type of robotic
platform produced by iRobot. Documenting the OWF algorithm provides a detailed example for
other researchers trying to develop robotic algorithms. The last section is a discussion of
planned experiments for the OWF maneuver.

1.1 The OWF Algorithm

A process flowchart for the OWF behavior is shown in figure 1. There are three major tasks in
the figure: planning, observing, and shooting. Generally, for the robotic implementation, each
of these major tasks is handled by independent computer programs which must communicate to

1 Fields, M. Developing an Overwatching Fires Mission for a Team of Unmanned Ground Vehicles. In Performance Metrics

for Intelligent Systems, ’03; NIST Special Publication 1014; National Institute of Standards and Technology: Gaithersburg, MD,
2003.

 2

Figure 1. The OWF process flowchart.

accomplish the overall mission objective. The ovals in the diagram indicate which team
members execute the major task. The numbers on the left side of the subtask boxes in figure 1
indicate the required processing order. Numbers appearing more than once indicate subtasks that
can occur simultaneously. The major task of the behavior is team-level mission planning. In the
OTB simulation, the human operator designates the area of interest, usually a road segment that
the team is to protect. The simulated robots perform terrain analysis using a digital map to select
candidate observation sites and firing sites near this area of interest. These candidate positions
are often near the edges of tree lines or buildings located on the map. In the robotic
implementation, using a digital map to plan the mission is not always practical for small robots
with limited processing power, so the human operator designates a set of geographic points to
represent the area of interest and another set of geographic points to represent potential covered
positions. The live robots (see section 1.2) plan their mission using these two sets of points.

After the initial planning phase of the algorithms, robotic team members assume their intended
roles. In the second step of the behavior, the robots move to their initial positions. In our OTB
OWF simulation, the observation site consists of two geographic points –the observation position
and an associated concealed position that allows the observer to hide. The firing site consists of
three geographic points—a firing position, a concealed position, and a preparatory position. The
preparatory position allows the shooter to wait for instructions from the observer without being
fully exposed. In the robotic implementation, the observation and firing sites are each

 3

represented by geographic points indicating the approximate locations of yellow walls that can
be used to conceal the robots. The robots navigate to these walls using Global Positioning
System (GPS) sensors, color cameras, and sonar sensors. The GPS system guides the robots to
within 3 m of the wall (the GPS system has a 3-m accuracy). Within this neighborhood, the
robot navigates to the walls using its cameras. The robot stops when the sonar sensors indicate
that the robot is close to the wall. The observer may need to maneuver around the wall to see the
area of interest.

In the third step of the algorithm, the observer watches for targets. Once the target is identified
(step four), the observer passes the information to the shooter (step five). Since safety is a
concern for the robotic implementation, the observer can be required to pass the target
information to the human operator for confirmation before passing the information to the
shooter. In the OTB algorithm, target information is passed directly to the shooter.

After the shooter receives instructions to fire at the target, it moves to its firing position (step six,
right-hand side of figure 1). Again, safety is a concern; the robot can be required to request
human operator confirmation before it fires the gun in step seven. In the OTB implementation,
the robots move to new positions in step six for the observer and step eight for the shooter. In
the robotic implementation, the robots do not change positions.

1.2 Hardware Considerations

Two ATRV-series robots from iRobot were selected to demonstrate the behavior as surrogate
robotic platforms for future tactical robotic systems. The robots are four-wheeled, skid-steered
platforms that can be used indoors and outdoors. The ATRV and ATRV-Jr’s sensors include
visible spectrum cameras, ultrasonic range sensor array, GPS, an inertial measurement unit, a
compass, and an inclinometer. A single line laser radar scanner provides obstacle location
information to the make the navigation more robust. All sensor data analysis and mobility
control is performed by a single onboard processor. The manufacturer has provided a software
package, called Mobility, as an object-oriented control architecture for the robots. 2

Figure 2 shows how we have simplified the demonstration environment to enable us to
experiment with the behavior using laboratory robots with limited sensor capabilities and
processing power. First, yellow walls, easily identified by the robots, simulate concealed
locations that may be used as observation points and concealment for the shooter. Second, the
target representing an enemy threat is a simple checkerboard pattern that the robots can identify
easily. At the present time, the target does not move. Third, we operate the robots at slow
speeds to allow time to process sensor information. We also simplified the planning process for
the robots. They are provided a list of cover points and a list of watch points. These

2iRobot, Inc. Mobility Robot Integration Software Users Guide; iRobot, Inc: Jaffery, NH, 2000.

 4

Figure 2. Behavior experiment using laboratory robots’ simplifications allow us to focus on the algorithm
and not be distracted by the integration of additional sensors, algorithms, or processors.

simplifications allow us to focus on the algorithm and not be distracted by the integration of
additional sensors, algorithms, or processors.

The software required to demonstrate the OWF algorithm can be divided into three
components—servers, an operator control unit (OCU), and the OWF application. Servers are
independent software programs that communicate with sensors and actuators onboard the robot.
Section 2 describes the servers required for the OWF behavior. The OCU, called the MONITOR
program, is an independent process that allows operators to start, modify, and stop the OWF
behavior. It is an optional element of the system—operators do not need to run the MONITOR
program to demonstrate the OWF algorithms. The OWF application implements the algorithm
described in the previous section. The MONITOR program is discussed in section 3.

 5

2. Servers

Adopting a client/server viewpoint, the robot team can be considered as a collection of
independent processes, called servers, which provide information and control the sensing and
actuation systems on the robots. Application programs, such as the OWF program or
human/robot interfaces, use these servers as command and communication interfaces to the
underlying hardware. By using this approach, it is possible to have distributed applications
communicating with the same hardware device simultaneously.

The Mobility software contains several servers used in this project. These include information
servers for the sensors, such as the cameras, GPS, compass, sonar units, and the laser radar
scanner. Command servers allow operators to control the robotic drive mechanism and the pan-
tilt units for the cameras. We modified the pan-tilt servers to gain greater control over the
motion of the unit. We also wrote a new camera server to interface with separately
manufactured cameras connected with the ATRV robot.

We created two additional servers for this project – the information server (InfoServer) and the
gun server (GunServer). The InfoServer handles communications between the robotic and
human team members of the OWF unit by maintaining a message board for the team. There are
three types of messages—status messages, geographic information, and images. Each team
member can post a short status message to report observations or to request help from another
team member. Each status message consists of an 80-character string variable and timestamp
that provides the time of message generation, in nanoseconds, and a message number. The type
of geographic information posted includes the location of the region of interest, concealed sites,
and mobility obstacles discovered as the robots drive through the region. Robots can post
images to show the human operator suspected targets. The geographic information and the
image information also include a timestamp and message number.

The InfoServer is an object derived from the ActiveSystemComponent class of the Mobility
software library. Messages are placed on the server, or published, using the new_sample method
of the InfoServer class. This makes the messages available to programs running on the robot or
other computers within the local area network. Note that the server does not control message
content—applications, such as the OWF behavior, determine the message set. The message set
for this behavior is described in the GetMessage section. Messages are read by programs using
the update_sample method of the InfoServer class. Both of these methods were inherited from
the ActiveSystemComponent class and are used frequently to pass information to and from many
servers included in the Mobility software package.

 6

This server implements a broadcast strategy. A robot only publishes messages on its specific
message line. Other robots must monitor that message line for new information. Note that this
strategy does not guarantee message delivery.

The GunServer provides an interface to the weapon carried by the shooter. Currently, the
“weapon” is a camera flash unit mounted in the center of the pan-tilt unit so that we can simplify
safety considerations during the software development process. The weapon hardware
communicates to the shooter’s computer via a parallel port interface. The GunServer is a very
simple interface that can accept two commands—Fire and DoNotFire. Like the InfoServer, the
GunServer is an object derived from the ActiveSystemComponent class. Messages are
published using the new_sample method for the GunServer class; messages are read by programs
using update_sample method. In the near future, the camera flash unit will be replaced with a
paint-ball marker. The GunServer will be modified to add safety features such as a power-down
or disable.

Table 1 gives the list of servers required by our OWF software. The table provides a generic
name for the server. Each robot may run a different copy of the server so the actual name must
be unique. The table also provided the purpose of the server and the author.

Table 1. Servers required by the OWF software.

Server Usual Host Purpose Author
ATRV all robots: R3, R4, & R5 Control of mobility actuators iRobot
laser robot R3 Obstacle information iRobot
sonar all robots: R3, R4, & R5 Obstacle information iRobot
framegrabber robots: R4 & R5 Make Sony cameras images

available
iRobot

GPS all robots: R3, R4, & R5 GPS information iRobot
Compass all robots: R3, R4, & R5 Compass information iRobot
Pan-Tilt all robots R3, R4, & R5 Control of camera/gun pan-tilt

unit
iRobot/ARL

VisionServer robot R3 Make Panasonic camera
available

ARL

InfoServer OCU Message Board for OWF unit ARL
GunServer robot R3 Control of camera flash unit or

paint-ball gun
ARL

3. The MONITOR program

The MONITOR program serves as the OCU for the OWF behavior. It provides an efficient
means to set parameters and pass information to the OWF behavior. Operators can start, modify,
and stop the behavior from a graphical interface. MONITOR is also used as a diagnostic tool
that allows the researcher to visualize information from several sensors at one time. Figure 3
shows the primary MONITOR window. The window consists of a button-bar at the top and a

 7

Figure 3. The main window of the MONITOR program.

map (or aerial photograph). The button-bar is subdivided into four areas. At the top left, a
operator can select four possible mouse actions: “Toggle Zoom,” “Add Wall,” “Add Watch,”
and “Add Path.” The Toggle Zoom selection allows the operator to switch between a regular
and zoomed view of the map. The other three choices allow operators to add points to the map
to indicate areas of cover (using the Add Wall selection), areas of interest (using the Add Watch
selection), or GPS waypoints (using the Add Path selection). The set of wall, watch, and path
points is considered as an information overlay for the map. The information is provided to the
OWF behavior via the InfoServer. In the lower left of the button bar, the Mouse Coordinate
section displays the geographic coordinates of the pointer. Coordinates are given in both
universal transverse mercator and in latitude/longitude.

The gray, green, and red buttons in the center of the button-bar are control buttons. The first two
buttons allow operators to change the location of points in the information overlay. The overlay
can be saved to an external file named myOverlay for future reference; the “Load Overlay”
button reads wall, watch, and/or path points from an external file (also named myOverlay). The
“Publish Info” button sends geographic information to the InfoServer. The last four buttons
start, modify, and stop the OWF behavior. The “settings” button allows operators to set options
for the OWF program. Figure 4 shows the settings popup window that allows operators to assign
roles to team members. This window allows operators to set up partial missions for

 8

Figure 4. The settings popup window.

diagnostic purposes. The operate also uses this window to require the robots to get target
confirmations before continuing the mission.

Back to figure 3, the “Start Robots” button starts the OWF mission as an independent process.
The “Stop” button ends the MONITOR program and all the processes it started, whereas the
“Stop Robots” button stops only the OWF program running on each of the robots.

The “Monitor Robot Position” section on the right-hand side of the button-bar allows the
operator to display the position of the robotic vehicles on the map. The operator can also save
this position data for later analysis.

As the OWF program executes, the MONITOR program uses the InfoServer to exchange
messages with the robots. There are currently four message exchanges. The first exchange is
initiated by the “Publish Info” button. The MONITOR program publishes the geographic points
and a status message to notify the robots that the data is ready. The next two exchanges involve
target confirmation; these exchanges only occur if the operator requires target confirmation.
After a robot finds a target, it publishes both a status message and an image. Figure 5a shows the
target popup window the MONITOR program displays. The “Confirm” and “Abort” buttons
generate operator responses that are passed through the InfoServer to the OWF program. In the
fourth type of message exchange, the robots pass information through the InfoServer to the
monitor concerning the location of discovered (unmapped) mobility obstacles.

 9

Figure 5. The target confirmation popup window.

4. Overwatching Fires Functions

This section describes the C++ functions developed for the OWF behavior. The functions are
grouped by category—Image Processing, Sonar Processing, Movement, Communication, and
Miscellaneous. Within each category, functions are described in alphabetical order. Each
function description contains five sections—Function Prototype, Description, Input Variables,
Output Variables, and Return Value. The Function Prototype provides the call syntax which
gives the argument list and the return type. The arguments are described in the Input Variable
and Output Variable section. The Description section provides a brief description of each
function. Most of the functions return status information; defined constants with descriptive
names are more useful as status information than the actual integer value of the constant. This
section provides the defined constant names and their interpretation. The appendix provides a
table of defined constants and their numerical values.

4.1 Image Processing
CenterTarget
Function Prototype
int CenterTarget (double InitialPanDegrees, double *FinalPanDegrees, int *ccx, int *ccy);
Description

 10

CenterTarget uses the Pan-Tilt unit to turn the cameras until the suspected target is in the center
of the image
Input Variables
InitialPanDegrees – the initial Pan position for the Pan-Tilt unit, in degrees.
Output Variables
FinalPanDegrees – the final position for the Pan-Tilt unit, in degrees.
(ccx, ccy) – position of the target center in the image given in pixels.
Possible Return Values
0 – meaningless.
ClassifyPixel
Function Prototype
int ClassifyPixel(int red, int green, int blue)
Description
ClassifyPixel determines the color of a pixel based on the RGB color scale. Possible return
values are red, blue or neutral.
Input Variables
(red, green, blue) integer variables, with values in the range 0-255, describing the RGB color of
the pixel
Possible Return Values
RED - the pixel is red
BLUE - the pixel is blue
NEUTRAL - the pixel is not red or blue.
FindNearestWall
Function Prototype
int FindNearestWall(int ImageNumber, int CameraNumber, int WallLocation,
int DesiredWallLocation,int *cx, int *cy, int *BinPixels int *NumberWallPixels)
Description
FindNearestWall finds the horizontal location of the nearest yellow wall in the image plane. The
image plane is divided into thin rectangular cells (5 pixels wide 40 pixels high). Cells with more
than 40 yellow pixels (using IsPixelYellow to classify the pixels) are considered part of a wall.
FindNearestWall reports the location of the center of wall.
Input Variables
ImageNumber - integer variable giving the image number that is used to tag stored images.
CameraNumber- an integer variable specifying the desired camera.
WallPointLocation – last known x-position of the wall center in the image plane.
DesiredWallLocation - desired x-position of the wall center in the image plane.
Output Variables
cx,cy - location in the image plane of the point on the wall closest to the endpoint.
BinPixels – Highest number of yellow pixels within a single bin.
NumberWallPixels – total number of yellow pixels in the image.
Possible Return Values
NotEnoughPixels - there are not enough yellow pixels in the image to identify a wall.
EnoughPixels - there are enough yellow pixels in the image to identify a wall.
FindTargetInImage
Function Prototype
int FindTargetInImage (int ImageNumber, int CameraNumber, int DisplayPicture,

 11

float period, int DesiredWayPointLocation, int *cx, int *cy, int *cbx, int *cby,
int *TotalHits, int *MaxBinHits)
Description
FindTargetInImage determines whether the target pattern is contained in the current image.
Input Variables
ImageNumber - integer variable giving the image number that is used to tag stored images.
CameraNumber- an integer variable specifying the desired camera.
DisplayPicture - an integer flag which determines if the system uses an external application to
show images while the behavior is running.
period- floating point number that sets the image retrieval period in seconds.
DesiredWayPointLocation - desired x location of the endpoint in the image plane. This variable
is passed to the graphics routine, PrintImage (described below), to draw a vertical reference line
on the image.
Output Variables
cx, cy - location, in the image plane, of the endpoint using the entire image to estimate location.
cbx, cbx - location, in the image plane, of the endpoint using the image bin with the highest
number of candidate points to estimate the location.
TotalHits - Total number of candidate points.
MaxBinHits - Largest number of candidate points within a single image bin.

Possible Return Values
EnoughPixels - indicates that there are enough candidate pixels to identify the endpoint in the
image.
NotEnoughPixels- there are too few candidate pixels to identify the endpoint in the image.
GetImage
Function Prototype
int GetImage(int CameraNumber, double period)
Description
GetImage updates the stored image array from the camera specified by the CameraNumber
variable. The period variable determines how often new images are retrieved. This allows
calling routines flexibility in using images - the GetImage routine can be called from inside a
high frequency loop, such as a driving loop, without requiring new images to be generated at the
same frequency.
Input Variables
CameraNumber - integer variable specifying the desired camera.
period - double-length floating point number that sets the image retrieval period in seconds.
Possible Return Values
YES - A new image has been generated
No - no new image is available
IsPixelYellow
Function Prototype
int IsPixelYellow(int red, int green, int blue)
Description
IsPixelYellow determines the color of the pixel using the RGB color scale. The routine returns
the integer constant YES if the pixel is yellow, NO otherwise.
Input Variables

 12

(red, green, blue) integer variables describing the RGB color of the pixel.
Possible Return Values
YES - the pixel is yellow.
No - the pixel is not yellow.
max_of
Function Prototype
int max_of (int red, int green, int blue)
Description
The function max_of determines the maximum of the three integers red, green and blue. It is
used by the function RGBToHSI.
Input Variables
(red,green,blue) – pixel color.
Output Variables
none
Possible Return Values
Maximum of the three input values represented as an integer.
min_of
Function Prototype
int min_of (int red, int green, int blue)
Description
The function min_of determines the minimum of the three integers red, green and blue. It is used
by the function RGBToHSI.
Input Variables
(red,green,blue) – pixel color.
Output Variables
none
Possible Return Values
Minimum of the three input values represented as an integer.
RGB_HSI
Function Prototype
void RGB_HSI(int red, int green,int blue, float *hue, float *saturation, float *intensity)
;Description
The function RGBToHSI converts an image pixel from the Red-Green-Blue scale to the Hue-
Saturation-Intensity scale
Input Variables
(red, green, blue) – pixel color using the Red-Green-Blue scale.
Output Variables
(hue, saturation, intensity) – pixel color using the Hue-Saturation-Intensity scale
Possible Return Values
None.

4.2 Sonar/Laser Processing

CheckSick
Function Prototype
int CheckSick(double *FrontDist,double *LeftDist,double
*RightDist,double *RearDist,int *BestDirection)

 13

Description
CheckSick grabs the most current set of laser line scanner readings to determine distance to
nearby obstacles. The current set of distance readings, given in inches, are stored in an array
called “Dist”.
Output Variables
FrontDist – the address of a double-length floating point number giving the closest obstacle
distance to the front of the vehicle, in inches.
RightDist - the address of a double-length floating point number giving the closest obstacle
distance to the right side of the vehicle, in inches.
LeftDist - the address of a double-length floating point number giving the closest obstacle
distance to the left side of the vehicle, in inches.
RearDist - the address of a double-length floating point number giving the closest obstacle
distance to the rear of the vehicle, in inches.
BestDirection - the address of a double-length floating point number giving the best direction to
move to avoid nearby obstacles.
Possible Return Values
SAFE - there are no objects within 15 inches of the robot
TooCloseFront - there is an object within 15 inches of the front of the robot.
TooCloseLeft there is an object within 15 inches of the left side of the robot.
TooCloseRight there is an object within 15 inches of the right side of the robot.
TooCloseRear there is an object within 15 inches of the rear of the robot.
CheckSonar
Function Prototype
int CheckSonar(double *FrontDist,double *LeftDist,double
*RightDist,double *RearDist,int *BestDirection)
Description
CheckSonar grabs the most current set of sonar readings to determine distance to nearby
obstacles. The current set of distance readings, given in inches, are stored in Dist array.
CheckSonar divides the 17 sonars into 4 sets. For the ATRV-JrTM they are: front (sonars 6, 7, 8,
9, and 10), rear (sonars 0 and 16), left (sonars 1, 2, 3, 4, and 5) and right(sonars 11, 12, 13, 14,
and 15). For the ATRVTM they are: front (sonars 0, 1, 2, 4, 5, and 6), rear (sonars 9 and 10), left
(sonars 11 and 3) and right(sonars 7 and 8). It returns the smallest distance for each of these sets.
Output Variables
FrontDist - the address of a double-length floating point number giving the closest obstacle
distance to the front of the vehicle, in inches.
RightDist - the address of a double-length floating point number giving the closest obstacle
distance to the right side of the vehicle, in inches.
LeftDist - the address of a double-length floating point number giving the closest obstacle
distance to the left side of the vehicle, in inches.
RearDist - the address of a double-length floating point number giving the closest obstacle
distance to the rear of the vehicle, in inches.
BestDirection - the address of a double-length floating point number giving the best direction to
move to avoid nearby obstacles.
Possible Return Values
SAFE - there are no objects within 15 inches of the robot
TooCloseFront - there is an object within 15 inches of the front of the robot.

 14

TooCloseLeft there is an object within 15 inches of the left side of the robot.
TooCloseRight there is an object within 15 inches of the right side of the robot.
TooCloseRear there is an object within 15 inches of the rear of the robot.

4.3 Movement
Bearing2Wpt
Function Prototype
int Bearing2Wpt(double EastCurrent, double NorthCurrent, double EastWpt,
double NorthWpt, double Threshold, double *BearingInDegrees)
Description
Bearing2Wpt gives the bearing from the vehicle to the current waypoint. Bearing2Wpt also
calculates the distance to the waypoint to determine if the vehicle has reached the threshold for
the current waypoint. If this condition has been met, the function returns FoundWayPoint which
cues FollowPath to advance to the next way point in the route.
Input Variables
EastCurrent - double-length floating point variable specifying the current Easting of the vehicle.
NorthCurrent - double-length floating point variable specifying the current Northing of the
vehicle.
EastWpt - double-length floating point variable specifying the Easting of the waypoint.
NorthWpt - double-length floating point variable specifying the Norting of the waypoint.
Threshold - double-length floating point variable specifying the distance threshold to the
waypoint.
Output Variables
BearingInDegrees - double-length floating point variable specifying the bearing to the waypoint
in degrees.
Possible Return Values
StillMoving - the distance threshold to the waypoint has not been reached.
FoundWaypoint – the distance threshold to the waypoint has been reached.
FacePoint
Function Prototype
int FacePoint(double EastCurrent, double NorthCurrent, double EastWpt,
double NorthWpt)
Description
FacePoint rotates the vehicle to face the point specified by (EastWpt, NorthWpt).
 Input Variables
EastCurrent - double-length floating point variable specifying the current Easting of the vehicle.
NorthCurrent - double-length floating point variable specifying the current Northing of the
vehicle.
EastWpt - double-length floating point variable specifying the Easting of the waypoint.
NorthWpt - double-length floating point variable specifying the Northing of the waypoint.
Threshold - double-length floating point variable specifying the distance threshold to the
waypoint.
Output Variables
none
Possible Return Values
none

 15

FollowPath
Function Prototype
int FollowPath (double PathNorth[25], double PathEast[25], double WallThreshold,
double WptThreshold, double DefaultSpeed, int NumberPathPoints,
int PrintFrequency)
Description
FollowPath Follows the path specified by the points { (PathEast[0], PathNorth[0]),
(PathEast[1], PathNorth[1]), …, (PathEast[N], PathNorth[N]) } with N < 25 at a speed of
DefaultSpeed while using the sonar information to avoid any obstacles. Obstacle avoidance is
accomplished simply by turning away from the detected obstacle. No attempt is made to
determine the shortest path length around the obstacle. The minimum front distance to a
potential obstacle is calculated, and if the obstacle threshold distance is met, the relative angle to
the obstacle is calculated. Based on this, the forward and angular velocities are then determined.
The closer the obstacle, the harder the robot will turn to avoid impact. This algorithm uses 2
tolerances, WallThreshold and WptThreshold to determine how closely the robot follows the
specified path. For the first N-1 points of the path, the robot moves towards its current point
until the distance to the current path point is less than WptThreshold. The last point of the path,
N, is treated as a special case – the distance between the robot and the Nth point is compared
with the tolerance WallThreshold.
Input Variables
PathNorth– double-length floating point array of Northing coordinates
PathEast– double-length floating point array of Easting coordinates.
WallThreshold - double-length floating point variable the distance threshold to the wall.
WptThreshold - double-length floating point variable specifying the distance threshold to the
waypoint.
DefaultSpeed - double-length floating point variable specifying the vehicle’s default forward
velocity.
NumberPathPoints - an integer that specifies the number of points in the PathNorth and PathEast
arrays.
PrintFrequency – an integer that specifies the frequency of printed output.
Output Variables
none
Possible Return Values
ReachedDestination – value is returned when vehicle has reached its final waypoint position.
GetGPS
Function Prototype
int GetGPS (double *Lat, double *Long, double *northing, double *easting)
Description
GetGPS determines the location of the vehicle. It reads the latitude and longitude from the GPS
sensor and calls LatLonToUTM to convert to the UTM scale used to calculate distances and
display the robot’s location on the map.
Input Variables
none
Output Variables
Lat – robot’s Latitude coordinate provided by the GPS sensor.
Long – robot’s Longitude coordinate provided by the GPS sensor.

 16

Northing – robot’s GPS northing coordinate in UTM
Easting – robot’s GPS easting coordinate in UTM
Possible Return Values
none
GetHeading
Function Prototype
int GetHeading (double *HeadingDegrees, double *HeadingRad, double *dx, double *dy)
Description
GetHeading determines the robots orientation from the on-board compass. The compass
measurement is based on magnetic north. GetHeading makes the offset correction to grid north,
and returns this value in degrees and radians.
Input Variables
none
Output Variables
HeadingDegrees – robot’s orientation in degrees
HeadingRad – robot’s orientation in radians
dx – x coordinate of the unit vector describing the robots orientation , cos(HeadingRad)
dy – y coordinate of the unit vector describing the robots orientation , sin(HeadingRad)
Possible Return Values
OK
LatLonToUTM
Function Prototype
void LatLonToUTM (double lat, double lon, int *zone, double *northing, double *easting)
Description
LatLonToUTM converts the robot’s latitudinal and longitudinal coordinates into UTM
coordinates with its corresponding zone.
Input Variables
lat – robot’s latitudinal coordinate
lon – robot’s longitudinal coordinate
Output Variables
zone – robot’s UTM zone
northing – robot’s UTM northing coordinate
easting – robot’s UTM easting coordinate
Possible Return Values
none
MoveBack
Function Prototype
void MoveBack()
Description
MoveBack backs the robot out of its firing position.
Input Variables
none
Possible Return Values
none
MoveIntoOpen
Function Prototype

 17

void MoveIntoOpen()
Description
MoveIntoOpen moves the robot out of a position of cover to an observation position.
Input Variables
none
Possible Return Values
none
MoveToFiringPosition
Function Prototype
int MoveToFiringPosition (double FPNorth, double FPEast, double TargetNorth,
double TargetEast)
Description
MoveToFiringPosition navigates the robot out of its hiding position behind the yellow wall and
into a position which allows a line of sight to a target position designated by the input variables
TargetNorth and TargetEast.
Input Variables
FPNorth – a northing UTM coordinate suggested for the robot’s firing position by the
PlanMission function.
FPEast – an easting UTM coordinate suggested for the robot’s firing position by the PlanMission
function.
TargetNorth – a northing UTM coordinate
TargetEast – an easting UTM coordinate
Possible Return Values
ReachedDestination – the robot has reached its firing position.
MoveToWall
Function Prototype
int MoveToWall (int mission, double PathNorth[25], double PathEast[25],
int NumberPathPoints)
Description
MoveToWall follows the path defined by (PathNorth, PathEast) to a wall near the point
(PathNorth[N], PatheEast[N]) where N is the last point in the path. The routine uses the GPS
waypoint guidance in the function FollowPath until the robot is close enough to the wall, then
switches to a visual guidance system that attempts to center the wall in the camera image. There
are two different tolerances passed to FollowPath: FinalPointTolerance is the acceptable distance
to the wall; IntermediatePointTolerance is the acceptable distance to other points on the path.
Input Variables
mission – SHOOTER or OBSERVER.
PathNorth[25] – an array of northing points that leads to a wall.
PathEast[25] – an array of easting points that leads to a wall.
NumberPathPoints – the number of path points that leads to a wall.
Possible Return Values
ProblemDetected - move cannot be completed.
ReachedDestination - move is successfully completed

4.4 Communication
GetMessage

 18

Function Prototype
GetMessage(int robot)
Description
GetMessage gets a message from the server. It uses the variable robot to determine which
message to retrieve.
Input Variables
robot - an integer variable designating the robot that published the message.
Possible Return Values
BEARING - message contains bearing information.
MOVING - message indicates the robot is in the MOVE state.
WATCHING -message indicates the robot is in the WATCH state.
STOPPED - the robot has terminated the mission.
DANGER - the robot has detected movement.
READY - Robot is ready to perform the mission.
PublishImage
Function Prototype
int PublishImage()
Description
PublishImage – sends an image to the InfoServer .
Input Variables
none
Possible Return Values
0 – meaningless.
PublishMessage
Function Prototype
int PublishMessage (int robot,char *msg)
Description
PublishMessage sends a message from the robot to the message server.
Input Variables
robot - an integer variable designating the robot publishing the message.
msg - a string variable containing the text of the message.
Possible Return Values
1 - meaningless.
PublishNewObstacles
Function Prototype
int PublishNewObstacles()
Description
PublishNewObstacles – sends a list of geographic coordinates for mobility obstacles to the
InfoServer .
Input Variables
none
Possible Return Values
0 – meaningless.

 19

4.5 Firing/Observing Functions
Fire
Function Prototype
int Fire(double North, double East);
Description
Fire activates the weapon.
Input Variables
(North, East) - target location
Possible Return Values
0 – meaningless.
Pan2Target
Function Prototype
int Pan2Target (double TargetNorth, double TargetEast, double *PanDegrees,
double *Range)
Description
Pan2Target finds the bearing from the vehicle’s current position to the target in UTM
coordinates. It returns the pan angle in degrees. For our purposes the tilt is fixed at zero. If the
relative elevation between turret and target and the range to target are known, the inclinometer
could provide enough additional information about the vehicle pose to calculate the tilt angle.
 Input Variables
TargetNorth – target’s UTM northing coordinate
TargetEast – target’s UTM easting coordinate
Output Variables
PanDegrees – pan angle relative to the vehicle’s heading from its current position to the target’s
UTM coordinates
range – the distance to the target
Possible Return Values
OK

ScanForTargets
Function Prototype
int ScanForTargets(int *cx, int *cy, double *PanDegrees, double *MapBearingDegrees);
Description
ProcessOptions sets options for the OWF behavior.
Input Variables
argv - a string array containing the command line arguments
argc - the number of command line arguments.
Possible Return Values
0 – meaningless.
SearchBearingLine
Function Prototype
int SearchBearingLine (double ObserverNorth, double ObserverEast,
double EndNorth, double EndEast,int *cx, int *cy,
double *PanDegrees,double *MapBearingDegrees
Description

 20

SearchBearingLine is used by the Shooter to search for targets along a map bearing line supplied
by the observer.
Input Variables
(ObserverNorth, ObserverEast) – the geographic location of the Observer
(EndNorth, EndEast) - the geographic location of the endpoint for the target bearing line.
Output Variables
int (cx,cy) – location of target in image pixel coordinates
PanDegrees – the current pan value, in degrees, for the pan and tilt unit
MapBearingDegrees – the estimate of target bearing from the firer.
Possible Return Values
0 – meaningless.

4.6 Miscellaneous
PickFiringPosition
Function Prototype
int PickFiringPosition (int Mission, int *NumberPathPoints);
Description
PickFiringPosition selects a firing position using the robot’s current position and the location of
the watch points.
Input Variables
none
Output Variables
(FPNorth, FPEast) – location of firing position.
Possible Return Values
0 – meaningless.
PlanMission
Function Prototype
int PlanMission(int Mission, int *NumberPathPoints);
Description
PlanMission produces a set of waypoints for the robot based on the robot’s role and geographic
overlay provided by the operator.
Input Variables
Mission - robot’s role (Observer or Shooter)
Output Variables
NumberPathPoints - number of waypoints in the robot’s plan.
Possible Return Values
0 – meaningless.
PointTurret
Function Prototype
int PointTurret (char *CoordSys,double Pan,double Tilt)
Description
PointTurret moves the pan and tilt unit in the relative coordinate system specified. Software
limits are in place for rotations relative to the vehicle.
Input Variables
CoordSys – specifies either a rotation relative to the vehicle or relative to the turret.
(Pan, Tilt) – desired pan tilt location measured in degrees.

 21

Possible Return Values
0 – meaningless.
PrintImage
Function Prototype
void PrintImage(int ImageNumber, int CameraNumber, int cx, int cy, int cbx, int cby,
int DesiredLocation)
Description
PrintImage writes an annotated image to a ascii portable pixmap file. In addition to the camera
image, the saved image has a 20 x 20 grid, shown in white. Two pixels, one at (cx,cy) and the
other at (cbx and cby) are highlighted in cyan and yellow, respectively. There is a vertical
magenta line at DesiredLocation for reference. Images are tagged with the robot number,
Camera number and an Image number so that they can be easily organized for post-processing.
Input Variables
ImageNumber - integer variable giving the image number that is used to tag stored images
CameraNumber- an integer variable specifying the desired camera.
cx,cy - image pixel to be highlighted in cyan.
cbx,cby - image pixel to be highlighted in yellow.
DesiredLocation -Location in the image plane of a aertical reference line to be drawn in magenta.
Possible Return Values
None
PrintYellowImage
Function Prototype
void PrintYellowImage(int ImageNumber, int CameraNumber,
int WallLocation, int DesiredWallLocation ,int LoX, int HiX)
Description
PrintYellowImage writes the current processed image for the CameraNumber to a ascii portable
pixmap file. The image shows yellow wall pixels, neutral pixels and a grid. The image also
shows vertical reference lines at WallLocation and DesiredWallLocation. Images are tagged
with the robot number, Camera number and an Image number so that they can be easily
organized for post-processing.
Input Variables
ImageNumber - integer variable giving the image number that is used to tag stored images
CameraNumber- an integer variable specifying the desired camera.
WallLocation - integer variable giving location of the vertical wall edge closest to the endpoint.
DesiredWalLocation - integer variable giving desired location of the wall in the image plane.
LoX,HiX - integer variables specifying the boundaries of the search region in the image plane.
Typically, one boundary is set to the current location of the endpoint and the other boundary is
set to the appropriate edge of the image plane
Possible Return Values
None
ProcessOptions
Function Prototype
int ProcessOptions(int argc, char *argv[])
Description
ProcessOptions sets options for the OWF behavior.
Input Variables

 22

argv - a string array containing the command line arguments
argc - the number of command line arguments.
Possible Return Values
None
ShakeHead
Function Prototype
int ShakeHead(int argc, char *argv[])
Description
ShakeHead – moves the Pan-Tilt unit up and down as a debugging feature to allow the operator
to know that a command has been received
Input Variables
argv - a string array containing the command line arguments.
argc - the number of command line arguments.
Possible Return Values
None
StartServers
Function Prototype
int StartServers(int argc, char *argv[])
Description
StartServers links local variables to the servers necessary to run the behavior. There are seven
servers used on the robot. The DriveCommand server sends commands to the driving system.
The Odometery server provides position information. The Sonar server provides data from the
sonar array. Two Camera servers provide images from the cameras. The Pan-Tilt server allows
control of the camera gaze. The Compass server provides compass information. The two
remaining servers, the Information server and the Map server are hosted by other computer
systems on the local area network used by the robots. The Information servers allows messages
to be passed between the robots. The Map server maintains a shared obstacle map used for
debugging purposes.
Input Variables
argv - a string array containing the command line arguments
argc - the number of command line arguments.
Possible Return Values
None

5. Conclusions

This report has presented a guide to the software developed for the OWF behavior implemented
on iRobots’ ATRV/ATRV-Jr platforms. It presents a short description of the behavior algorithm
and a detailed description of the servers and functions used to implement the algorithm.

In our future work, we are interested in using the OWF behavior as an experimental system. We
are interested in studying the amount of time that the OWF team requires to acquire and fire at
targets. This timeline depends on communication delays in the system, robot processor speed,

 23

and on the level of involvement for the human operator. Our experimental area is too small to
actually affect communications but we can delay messages to simulate communication delays.
As we make the image processing algorithms more sophisticated, we expect to impact processing
time. Right now, there is only one target in the experimental setup. The human’s role is to
confirm that the robots have identified this target. By introducing multiple targets and false
targets, the operator’s response time may change. Allowing the targets to move could also effect
the overall mission timeline.

In our future work, we will also incorporate more realistic sensor algorithms. In particular, we
plan to use more realistic hiding locations in the future. We will modify the FindNearestWall
routine so that it uses vertical edges, shape, and color information to identify possible hiding
locations.

Right now the robots do very little planning to determine their next course of action. By
incorporating a world map, from the InfoServer, the robots could plan their moves more
effectively. We will also address this issue in our future research.

 24

Appendix. Named Constants

The following is a list of the defined constants used in the Overwatching Fires software.

Constant Name Value Meaning
ABORT 1017 Message Content: OCU aborts fire mission.
BLUE 201 Pixel color is blue.
Blocked -500 Planning constant: map location is blocked.
BOTH 7202 Confirm targets for observers and shooters.
CanNotSee 0 Planning constant: map location cannot be seen

from robot location.
CanSee 1 Planning constant: map location can be seen from

robot location.
Clear -501 Planning constant: map location is clear.
CompletedMove 501 Move has successfully completed.
CONTINUE 1018 Message Content:moving.
DANGER 1005 Message Content: Team member encounters enemy

units.
FoundWayPoint 105 Robot is close enough to designated waypoint.
EnoughPixels 104 Image does not contain enough target/wall pixels

for analysis.
Halted 109 Robot has halted.
MAP_DATA_AVAIL
ABLE

1012 Message Content:Ocu has published overlay points.

MOVING 1002 Message Content:moving.
NEGATIVE -1 Endpoint is on the right of the robot.
NEUTRAL 203 Pixel color is not a target color.
NO 0 Unsuccessful completion of function.
NormalForwardSpeed 0.6 Normal driving speed in m/s.
NONE 7203 Do not confirm targets.
NotEnoughPixels 103 Image does not contain enough target/wall pixels

for analysis.
OBSERVER 7200 Team member role: observer.
ObstacleDetected 13 There is an obstruction near the robot.
OCU 1 Team member role: human interface unit.
OK 101 Function has successfully completed.
POSITION 1015 Message Content:robot is sending position data.
POSITIVE 1 Endpoint is on the left of the robot.
ProblemDetected 102 Function encounters a problem and cannot

complete successfully.
ReachedDestination 106 Reached destination such as wall or GPS waypoint.
READY 1006 Message Content:Robot ready for the mission to

begin.

 25

RED 200 Pixel color is red.
RobotR3 3 Robot R3.
RobotR4 4 Robot R4.
RobotR5 5 Robot R5.
SAFE 300 The robot can safely move.
SafeDistance 15.0 Maximum safe distance from obstacles in inches.
SHOOT 1010 Message Content:Orders to fire at target.
SHOOTING 1011 Message Content:Robot is shooting target.
SHOOTER 7201 Team member role: shooter.
StartingMove 107 Robot is beginning movement.
StillMoving 108 Robot is still traveling.
STOPPED 1003 Message Content:stopped.
SomethingInTheWay 502 Move cannot be completed.
TARGET 1014 Message Content:Robot see a potential target.
TARGET_CONFIRM
ED

1013 Message Content:OCU confirms target.

TooCloseFront 301 Obstacle near the front of the robot.
TooCloseLeft 303 Obstacle near the left of the robot.
TooCloseRear 302 Obstacle near the rear of the robot.
TooCloseRight 304 Obstacle near the right of the robot.
UNKNOWN 2000 Unknown message content.
WAITING 1016 Message Content:robot waiting for orders.
WallPoint -100 Planning constant: map location is a known wall

point.
WATCHING 1004 Message Content:robot watching for targets.
WatchPoint -200 Planning constant: map location is a known area of

interest.
YELLOW 202 Pixel color is yellow.
YES 1 Successful completion of function.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 26

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 27

 1 DOD JOINT CHIEF OF STAFF
 DEFENSE TECH INFO CTR
 J39 CAPABILITIES DIV
 J M BROWNELL
 THE PENTAGON RM 2C865
 WASHINGTON DC 20301

 1 DIR
 CIA
 D MOORE
 WASHINGTON DC 20505-0001

 3 PM ABRAMS TANK SYS
 SFAE GCS AB
 COL KOTCHMAN
 P LEITHEISER
 H PETERSON
 WARREN MI 48397-5000

 1 PM M1A2
 SFAE GCS AB
 R LOVETT
 WARREN MI 48397-5000

 1 PM M1A1
 SFAE GCS AB
 L C MILLER JR
 WARREN MI 48397-5000

 1 PM BFVS
 SFAE GCS BV
 C L MCCOY
 WARREN MI 48397-5000

 1 PM BFVS
 ATZB BV
 C BETEK
 FORT BENNING GA 31905

 1 PM M2/M3 BFVS
 SFAE GCS BV
 J MCGUINESS
 WARREN MI 48397-5000

 3 PM BCT
 SFAE GCS BCT
 R D OGG JR
 J GERLACH
 T DEAN
 WARREN MI 48397-5000

 1 PM IAV
 SFAE GCS BCT
 J PARKER
 WARREN MI 48397-5000

 1 PM NIGHT VISION/RSTA
 SFAE IEW&S NV
 COL BOWMAN
 FORT BELVOIR VA 22060-5806

 1 NIGHT VISION & ELECTRONIC
 SENSORS DIR
 A F MILTON
 10221 BURBECK RD SUITE 430
 FORT BELVOIR VA 22060-5806

 1 COMMANDER
 US ARMY TRADOC
 ATINZA
 R REUSS
 BLDG 133
 FORT MONROE VA 23651

 1 OFC OF THE SECY OF DEFENSE
 CTR FOR COUNTERMEASURES
 M A SCHUCK
 WHITE SANDS NM 88002-5519

 1 US SOCOM
 SOIO JA F
 J GOODE
 7701 TAMPA POINT BLVD
 BLDG 501
 MCDILL AFB FL 33621-5323

 1 COMMANDER
 US ARMY ARMOR CTR & FT KNOX
 TSM/ABRAMS
 D SZYDLOSKI
 FORT KNOX KY 40121

 1 COMMANDER
 US AMBL
 J HUGHES
 FORT KNOX KY 40121

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 28

 1 DIR OF COMBAT DEV
 ATZK FD
 W MEINSHAUSEN
 BLDG 1002 RM 326
 1ST CALVARY DIV RD
 FORT KNOX KY 40121-9142

 1 COMMANDING OFFICER
 MARINE CORPS INTEL ACTIVITY
 W BARTH
 3300 RUSSELL RD SUITE 250
 QUANTICO VA 22134-5011

 2 COMMANDER
 US TACOM ARDEC
 AMSTA AR TD
 M DEVINE
 M FISETTE
 PICATINNY ARSENAL NJ
 07806-5000

 4 COMMANDER
 US TACOM ARDEC
 AMSTA AR FSA S
 S R KOPMANN
 H KERWIEN
 K JONES
 A FRANCHINO
 PICATINNY ARSENAL NJ
 07806-5000

 1 COMMANDER
 AMSTA AR FSA P
 D PASCUA
 PICATINNY ARSENAL NJ
 07806-5000

 1 COMMANDER
 AMSTA AR FSA M
 J FENECK
 PICATINNY ARSENAL NJ
 07806-5000

 2 COMMANDER
 AMSTA AR FSP
 D LADD
 M CILLI
 PICATINNY ARSENAL NJ
 07806-5000

 6 COMMANDER
 AMSTA AR CCH A
 M PALTHINGAL
 A VELLA
 E LOGSDON
 R CARR
 M MICOLICH
 M YOUNG
 PICATINNY ARSENAL NJ
 07806-5000

 1 COMMANDER
 AMSTA AR QAC
 R SCHUBERT
 PICATINNY ARSENAL NJ
 07806-5000

 2 COMMANDER
 AMSTA AR FSP G
 A PEZZANO
 R SHORR
 PICATINNY ARSENAL NJ
 07806-5000

 1 COMMANDER
 AMSTA AR FSA T
 A LAGASCA
 PICATINNY ARSENAL NJ
 07806-5000

 1 COMMANDER
 AMSTA AR FSP I
 R COLLETT
 PICATINNY ARSENAL NJ
 07806-5000

 2 COMMANDER
 AMSTA AR WE C
 R FONG
 S TANG
 PICATINNY ARSENAL NJ
 07806-5000

 1 COMPUTER SCI AND ENGR
 UNIV OF SOUTH FLORIDA
 R MURPHY
 4202 E FOWLER AVE ENB342
 TAMPA FL 33620-5399

 1 APPLD PHYSICS LAB
 11100 JOHNS HOPKINS RD
 T NEIGHOFF
 LAUREL MD 20723-6099

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 29

 1 SAIC
 KA JAMISON
 PO BOX 4216
 FT WALTON BEACH
 FL 32549

 1 PEO GCS
 SFAE GCS
 C GAGNON
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS W
 A PUZZUOLI
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS BV
 J PHILLIPS
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS LAV
 T LYTLE
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS AB SW
 DR PATTISON
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS AB LF
 LTC PAULSON
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS LAV M
 T KLER
 WARREN MI 48397-5000

 1 PEO GCS
 SFAE GCS LAV FCS
 ASOKLIS
 WARREN MI 48397-5000

 2 COMMANDER
 US ARMY TACOM
 AMSTA TR
 R MCCLELLANC
 BAGWELL
 WARREN MI 48397-5000

 11 COMMANDER
 US ARMY TACOM
 AMSTA TR R
 J PARKS
 S SCHEHR
 D THOMAS
 C ACIR
 J SOLTESZ
 S CAITO
 K LIM
 J REVELLO
 B BEAUDOIN
 B RATHGEB
 M CHAIT
 WARREN MI 48397-5000

 8 COMMANDER
 AMSTA CM XSF
 R DRITLEIN
 HENDERSON
 HUTCHINSON
 SCHWARZ
 S PATHAK
 R HALLE
 J ARKAS
 G SIMON
 WARREN MI 48397-5000

 3 PEO PM MORTAR SYS
 SFAE AMO CAS IFM
 L BICKLEY
 M SERBAN
 K SLIVOVSKY
 PICATINNY ARSENAL NJ
 07860-5000

 1 PEO PM MORTAR SYS
 SFAE GCS TMA
 R KOWALSKI
 PICATINNY ARSENAL NJ
 07860-5000

 1 PEO PM MORTAR SYS
 SFAE GCS TMA PA
 E KOPACZ
 PICATINNY ARSENAL NJ
 07860-5000

 3 MIT LINCOLN LAB
 J HERD
 G TITI
 D ENGREN
 244 WOOD ST
 LEXINGTON MA 02420-9108

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 30

 2 THE UNIV OF TEXAS
 AT AUSTIN
 I MCNAB
 S BLESS
 PO BOX 20797
 AUSTIN TX 78720-2797

 1 UNIV OG NEBRASKA
 S FARRITOR
 N118 WALTER SCOTT ENGR CTR
 LINCOLN NE 68588-0656

 1 INNOVATIVE SURVIVABILITY TECH
 J STEEN
 PO BOX 1989
 GOLETA CA 93116

 1 SUNY BUFFALO
 ELECTRL ENGR DEPT
 J SARJEANT
 PO BOX 601900
 BUFFALO NY 14260-1900

 1 GENERAL DYNAMICS LAND SYS
 D GERSDORFF
 PO BOX 2074
 WARREN MI 49090-2074

 1 COMMANDER
 US ARMY CECOM
 W DEVILBISS
 BLDG 600
 FORT MONMOUTH NJ 07703-5206

 1 MARCORSYSCOM CBG
 J DOUGLAS
 QUANTICO VA 22134-5010

 2 COMMANDER
 USAIC
 ATZB CDF
 J LANE
 D HANCOCK
 FORT BENNING GA 31905

 1 DIRECTOR
 US ARMY RSCH LAB
 AMSRL SL EA
 R CUNDIFF
 WSMR NM 88001-5513

 1 DIRECTOR
 US ARMY RSCH LAB
 AMSRL SL EM
 J THOMPSON
 WSMR NM 88001-5513

 4 UNITED DEFNS ADV DEV CTR
 K GROVES
 J FAUL
 T WINANT
 V HORVATICH
 328 BROKAW RD
 SANTA CLARA CA 95050

 2 NORTHROP GRUMMAN CORP
 A SHREKENHAMER
 D EWART
 1100 W HOLLYVALE ST
 AAUSA CA 91702

 1 COMMANDER
 US ARMY AMCOM
 AMSAM RD ST WF
 D LOVELACE
 REDSTONE ARSENAL AL
 35898-5247

 1 OFC OF THE SECY OF DEFNS
 ODDRE R&T
 G SINGLEY
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US MILITARY ACADEMY
 MATHEMATICAL SCIENCES
 CTR OF EXCELLENCE
 MDN A
 MAJ HUBER
 THAYER HALL
 WEST POINT NY 10996-1786

 2 DIRECTOR
 US ARMY WATERWAYS
 EXPER STATION
 R AHLVIN
 3909 HALLS FERRY RD
 VICKSBURG MS 39180-6199

 2 NATL INST STAN AND TECH
 K MURPHY
 100 BUREAU DR
 GAITHERSBURG MD 20899

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 31

 3 COMMANDER
 US ARMY MMBL
 J BURNS
 BLDG 2021
 BLACKHORSE REGIMENT DR
 FORT KNOX KY 40121

 2 DIRECTOR
 NASA JET PROPULSION LAB
 L MATHIES
 K OWENS
 4800 OAK GROVE DR
 PASADENA CA 91109

 1 DIRECTOR
 AMCOM MRDEC
 AMSMI RD W
 C MCCORKLE
 REDSTONE ARSENAL AL 35898-5240

 1 COMMANDER
 US ARMY INFO SYS ENGRG CMD
 ASQB OTD
 F JENIA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY NATICK RDEC
 ACTING TECHNICAL DIR
 SSCNC T
 P BRANDLER
 NATICK MA 01760-5002

 1 COMMANDER
 ARMY RSCH OFC
 4300 S MIAMI BLVD
 RSCH TRIANGLE PARK
 NC 27709

 1 COMMANDER
 US ARMY TRADOC
 BATTLE LABE INTEGRATION
 7 TECH DIR
 ATCD BJ
 A KLEVECZ
 FT MONROE VA 23651-5850

 1 DARPA
 D KASPAR
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

ABERDEEN PROVING GROUND

 1 PM ODS
 SFAE CBD
 B WELCH
 BLDG 4475
 APG MD 21010-5424

 1 COMMANDER
 US ARMY ATC
 VIRTUAL PROVING GROUND TEAM
 J CORDE
 400 COLLERAN RD BLDG 321
 APG MD 21005-5000

 1 COMMANDER
 USAATC
 STEAC CO
 ELLIS
 APG MD 21005-5001

 1 COMMANDER
 USAATC
 STEAC TD
 J FASIG
 APG MD 21005-5001

 1 COMMANDER
 USAATC
 STEAC TE
 H CUNNINGHAM
 APG MD 21005-5001

 1 COMMANDER
 USAATC
 STEAC RM
 A MOORE
 APG MD 21005-5001

 3 DIRECTOR
 USAMSAA
 AMSRD AMS D
 M MCCARTHY
 B SIEGEL
 P TOPPER
 APG MD 21005-5067

 1 COMMANDER
 USAATC
 STEAC
 ELLIS
 APG MD 21005-5000

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 32

 1 COMMANDER
 USAATC
 STEAC TD
 J FASIG
 APG MD 21005-5000

 1 COMMANDER
 USAATC
 STEAC TE
 H CUNNINGHAM
 APG MD 21005-5000

 1 COMMANDER
 USAATC
 STEAC RM C
 A MOORE
 APG MD 21005-5000

 1 COMMANDER
 USAATC
 STEAC TE F
 P OXENBERG
 APG MD 21005-5000

 30 DIR USARL
 AMSRD ARL WM
 J BORNSTEIN
 B BURNS
 B RINGER
 T ROSENBERGER
 E SCHMIDT
 J SMITH
 C SHOEMAKER
 AMSRD ARL WM B
 W CIEPIELLA
 A HORST
 AMSRD ARL WM BA
 D LYONS
 AMSRD ARL WM BC
 P PLOSTINS
 AMSRD ARL WM BD
 B FORCH
 AMSRD ARL WM BF
 M BARANOSKI
 H EDGE
 M FIELDS
 G HAAS
 T HAUG
 W OBERLE
 R PEARSON
 D WILKERSON
 AMSRD ARL WM TC
 R COATES

 AMSRD ARL WM TE
 P BERNING
 C HUMMER
 T KOTTKE
 M MCNEIR
 A NIILER
 J POWELL
 G THOMSON
 AMSRD SL BG
 M ENDERLEIN
 AMSRD SL EM
 C GARRETT

